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Climate change effects
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Microbial impacts on terrestrial carbon cycling:

-DOE BER BSSD SFA

-Litter decomposing microbiomes differ in DOC and CO, production
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Microbial impacts on terrestrial carbon cycling:
-DOE BER BSSD SFA
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Proximity to human habitat increases microbial N use efficiency during
subsurface litter decomposition and leads to increased CO, release
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Climate

action
verification
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Climate change mitigation and food security:
Microbial systems to control carbon cycling and plant drought
tolerance
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Plant performance distribution 1:
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Machine learning to understand complex systems

Dimensional reduction using Latent Dirichlet ~ Non-linear interactions with Probabilistic
Allocation Graphical Modeling
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Epigenetics for
plants
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Plants as biosensors
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